J0316+4328: A New Gravitational Lens

Edward Boyce¹ Steven Myers² Ian Browne¹ Wendy Stroman^{2,3} Neal Jackson¹

¹University of Manchester, Jodrell Bank Centre for Astrophysics

²National Radio Astronomy Observatory

³Iowa State University

Searching for Strong Lenses in Large Imaging Surveys Fermilab, 15/06/2007

Symmetric Lenses

- Red: source and caustics
 Blue: images and critical curves
- When the source and galaxy are closely aligned,
 4 bright images or
 2 bright images at similar magnification

Asymmetric Lenses

• When the source is further from the galaxy, get brighter central image, 2 bright images with very different magnification

В

0.2

0.3

Why are Asymmetric Lenses Interesting?

- Central image is brighter (less demagnified)
- Images A, B form at very different radii: probe density profile over larger scale
- Image B forms closer to lens galaxy center: absorption measures gas, dust in lens galaxy

The CLASS Survey

- 22 systems: compact radio sources, galaxy lenses (separations 0".3-2".0)
- First cut: 8.4 GHz VLA
- Followed up with 5 GHz MERLIN, VLBA

CLASS Catalog

- 11,685 radio sources, selected from GB6 (5 GHz) and NVSS (1.4 GHz) catalogs
- ullet $S_5 >$ 30 mJy, lpha > -0.5 between 1.4 and 5 GHz
- 8.4 GHz VLA snapshots (30s on source), rms \sim 0.2 mJy, resolution 0".2-0".3
- Cut-off of 10:1 on flux density ratio for two component systems (to ensure completeness for $S_8 > 20$ mJy)

Following Up CLASS Asymmetric Candidates

- Start with CLASS automapped sources, extract 243 sources with two components at flux density ratio 10-30
- Remap by hand, to check the automapper
- Many examined, followed up at Jodrell Bank: Tom York & Stuart Lowe (MSc. project), Neal Jackson & Satoru Sakai (small separation lenses)

Higher Resolution with VLA, MERLIN

- VLA: 18 candidates observed at 5, 8 GHz, 8 of those observed at 22 GHz
- MERLIN: 2 candidates observed at 6 GHz
- Most sources ruled out: extended secondary and/or different spectra
- J0316+4328: probably a lens

Rejected Candidates: J2139+1027 and J0856+4935

- (I) J2139+1027 VLA spectrum
- (r) J0856+4935 MERLIN map

J0316+4328: VLA

- (I) 8 GHz, beam $0\rlap.{''}20 \times 0\rlap.{''}18$ (r) 22 GHz, beam $0\rlap.{''}11 \times 0\rlap.{''}07$
- 2 compact, flat spectrum components (A, B)
- 2 extended, steep spectrum components (C, D)

J0316+4328: MERLIN

- \bullet (r) 6 GHz MERLIN, beam 0".051 \times 0".045
- A, B still compact, same ratio
- C, D resolved, steeper spectrum
- (I) Spectra of components

J0316+4328: VLBA

- ullet 8 GHz VLBA, beam 2.8 imes 2.5 mas, (I) A, (r) B
- A, B detected with same flux density ratio
- Substructure only in component A
- C, D completely resolved out

J0316+4328: Lensing Configuration

- Source has compact core & extended lobes
- 2 images of core, flux density ratio 19:1 (largest), separation 0".40 (2nd smallest)
- 1 image of each lobe, like B0957+561 (r)

J0316+4328: Final Confirmation

- 22 of 23 CLASS targets with compact VLBA components were lenses (exception: components had different spectra)
- Applied for High Sensitivity Array, will look for matching radio substructure, maybe a central image?
- Final confirmation needs optical follow-up, applied for WHT imaging, Lick spectroscopy